

Introduction

- LHCb experiment at LHC
 - Designed mostly for b and c decays
 → ~zero trigger efficiency otherwise
 - But there is also an ~infinite strangeness production' at LHC (kaon xs ~ 1.2 barn)
 - Run-I provided world best results in $K_s \to \mu\mu$ and $\Sigma \to p\mu\mu$
 - Major improvements in the trigger for s decays done for Run-II (2016-2018), and ongoing for Upgrade

We speak about two upgrade phases:

Phase-I (2022-2030): Data taking started this year

Phase-II (2031->2035): Framework TDR published (CERN-LHCC-2021-012)

Transverse momentum

 Transverse momentum is a standard handle at LHC to separate signal events from generic pp collisions

Typical PT

~30-40 GeV

B-physics $\sim 1-2 \text{ GeV}$

s-physics ~0.08 GeV

Transverse momentum

- Transverse momentum is a standard handle at LHC to separate signal events from generic pp collisions
- Doesn't work at all for strangeness decays, which decay products have very low PT
- However this can be compensated by requiring large separation between the pp colision and the kaon decay point

Typical PT

~30-40 GeV

B-physics $\sim 1-2 \text{ GeV}$

s-physics ~0.08 GeV

Trigger system: status and prospects

L0 (Hardware) Main bottleneck for K (PT> O(GeV) . Can't be changed

LHCb Upgrade

HLT1 (Software)

HLT2

(Software)

Not designed for K, but flexible.

K triggers implemented in Run-II

(Note: This logo may not be official)

HLT (Software)

 ϵ (2011-2012) ~ 1-2% ϵ (Run-II) improved HLT ~ 18% (dimuons) Maximum allowed by L0 ~30%

 ε (Upgrade) ~ 100%

$K_S \rightarrow \mu\mu$: motivation

- SM prediction: BR($K_S \rightarrow \mu\mu$) = $(5.18 \pm 1.50_{LD} \pm 0.02_{SD})x10^{-12}$ JHEP05(2018) 024 , JHEP 0401 (2004) 009, NPB 366 (1991) 189
- $K_S \rightarrow \mu\mu$ sensitive to different physics than $K_L \rightarrow \mu\mu$, NP can be bigger than SM by ~1 order of magnitude or even saturate current EXP limit

Example of a SUSY scenario from V.Chobanova et al., JHEP05(2018) 024

Leptoquark scenarios from Bobeth & Buras, JHEP02(2018)101

$K_s \rightarrow \mu\mu$ latest result

PRL 125, 231801 (2020)

- Full dataset analysed (9 fb^{-1})
- No evidence for signal (1.4σ)

$K_s \rightarrow \mu\mu$ latest result

gain

LHCb-PAPER-2019-038 arXiv: 2001.10354 PRL 125, 231801 (2020)

- Full dataset analysed (9 fb⁻¹)
- No evidence for signal (1.4σ)

BR(
$$K_s \rightarrow \mu \mu$$
) < 2.1x 10⁻¹⁰ @ 90% CL

At 1
$$\sigma$$
: $\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^-) = 0.9^{+0.7}_{-0.6} \times 10^{-10}$

Expect to reach sensitivities very close to the SM prediction with the Phase-II Upgrade

The HyperCP evidence

• The HyperCP collaboration found evidence for $\Sigma \rightarrow p\mu\mu$ decays, and provided a BR:

$$B(\Sigma \to p \mu \mu) = (8.6^{+6.6}_{-5.4} \pm 5.5) \times 10^{-8}$$

PRL 94 (2005) 021801

• Consistent w/SM: $1.6 < BR[x10^{-8}] < 9$ X G He et al, PRD 72 (2005) 074003

 Suggested the existence of a new neutral particle at that mass

$\Sigma \rightarrow p\mu\mu$

LHCb-PAPER-2017-049 arXiv:1712.08606 PRL 120, 221803 (2018)

- Current result $\Sigma \rightarrow p\mu\mu$. Run II : Found 4σ evidence BR($\Sigma \rightarrow p\mu\mu$) : x 10^{-8} , no evidence of resonant dilepton state
- Run-II: We expect ~150 signal events → measure AFB
- Upgrade(s): Full differential decay rate

10 years ago we thought this channel was ~impossible and instead now we are even thinking on an amplitude analysis....

• Search for $K_{S(L)} \rightarrow \mu \mu \mu \mu$ (See Miguel's talk this morning), which are very suppressed in SM, 10^{-13} (KL) – 10^{-14} (KS)

No events found in signal region, set world's best (first) upper limits on those

decays

$$\mathcal{B}(K_S^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 5.1 \times 10^{-12},$$

 $\mathcal{B}(K_L^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 2.3 \times 10^{-9},$

$K^0 \rightarrow \mu \mu \mu \mu$

- Prospects for the Upgrade are excellent:
- Scan most of the allowed range in BSM models (such as Dark Photons)
- Get close to the SM values if no signal is found

$K_s \rightarrow \pi^0 \mu \mu$ sensitivity study

$$\mathcal{B}(K_L \to \pi^0 \mu^+ \mu^-)_{SM} = \{1.4 \pm 0.3, 0.9 \pm 0.2\} \cdot 10^{-11}$$

Sensitive to BSM, eg, ED

$$\mathcal{B}(K_L \to \pi^0 l^+ l^-) = \left(C_{\text{dir}}^l \pm C_{\text{int}}^l |a_S| + C_{\text{mix}}^l |a_S|^2 + C_{\gamma\gamma}^l + C_S^l \right) \cdot 10^{-12}$$

$$|a_S| = 1.20 \pm 0.20$$

$$C_{\text{dir}}^e = (4.62 \pm 0.24) \left[(\text{Im} Y_A)^2 + (\text{Im} Y_V)^2 \right],$$

$$C_{\rm int}^e = (11.3 \pm 0.3) \,\mathrm{Im} \, Y_V \,,$$

$$C_{\rm mix}^e = 14.5 \pm 0.5$$
,

$$C_{\gamma\gamma}^e \approx C_S^e \approx 0$$
,

$$C_{\text{dir}}^{\mu} = (1.09 \pm 0.05) \left[2.32 \left(\text{Im} Y_A \right)^2 + \left(\text{Im} Y_V \right)^2 \right] \frac{\text{Ineas}}{K_S^0 \to \pi^0 \mu^+ \mu^-}$$

$$C_{\text{int}}^{\mu} = (2.63 \pm 0.06) \,\text{Im} \, Y_V \,,$$

$$C_{\rm mix}^{\mu} = 3.36 \pm 0.20$$
,

$$C^{\mu}_{\gamma\gamma} = 5.2 \pm 1.6$$
,

$$C_S^{\mu} = (0.04 \pm 0.01) \,\mathrm{Re} \, Y_S + 0.0041 \,(\mathrm{Re} \, Y_S)^2 \,.$$

Dominant uncertainty, that makes difficult potential BSM interpretation of $K_{\scriptscriptstyle \rm I} \rightarrow \pi^0 \mu \mu$

It comes from the **experimental uncertainty** on BR($K_s \rightarrow \pi^0 \mu \mu$) measured by NA48

$$K_S^0
ightarrow \pi^0 \mu^+ \mu^-$$

NA48

$$(2.9^{\,+1.5}_{\,-1.2}) \times 10^{-9}$$

~50% relative error

Improved measurements of BR($K_s \rightarrow \pi^0 \mu \mu$) will translate into improved BSM constraints from $K_L \rightarrow \pi^0 \mu \mu$

K_S → π^0 μμ sensitivity study

Phase-II-upgrade? →

Much more bkg than $K_s \rightarrow \mu\mu$, but also 1000x more signal

 $|a_{S}|$ = 1.2±0.2 from NA48 fixing b_{S} from VMD PLB599 (2004) 197-211,

Projected statistical uncertainties on a_S under various analysis conditions

Configuration	Phase I	Phase II
BR & q^2 fit	0.25	0.10
BR & q^2 fit with NA48 constraint	0.19	0.10
BR & q^2 fit fixing b_S	0.06	0.024
a_S measurement from BR alone	0.06	0.024

(fixing b_s)

Alves et al., JHEP 05 (2019) 048 1808.03477

$K_S \rightarrow \gamma \mu \mu$, $K_S \rightarrow X \mu \mu$, $K_S \rightarrow X \pi \mu$,?

 $K_s \rightarrow \Pi^0 \mu \mu$ analysis can also be extended to other neutrals, eg: $K_s \rightarrow \gamma \mu \mu$ But harder to separate from $K_s \rightarrow \Pi \Pi$ as the mass of the neutral gets lighter (unless a cut on the energy is used)

Semileptonic decays

• Semileptonic Hyperon Decays (SHD)

$$R_{B_1B_2} = rac{\Gamma(B_1 o B_2 \, \mu^- \, ar
u_\mu)}{\Gamma(B_1 o B_2 \, e^- \, ar
u_e)}$$

Very interesting in view of LUV hints in semileptonic B decays

Many muonic modes have still very poor precision (20%, 100%)

 © High BR (10⁻⁴): Massive yields in LHCb acceptance

$$R_{B_1B_2}^{\text{NP}} \simeq \frac{\left(\epsilon_S^{S\mu} \frac{f_S(0)}{f_1(0)} + 12 \epsilon_T^{S\mu} \frac{g_1(0)}{f_1(0)} \frac{f_T(0)}{f_1(0)}\right)}{(1 - \frac{3}{2}\delta)\left(1 + 3\frac{g_1(0)^2}{f_1(0)^2}\right)} \Pi(\Delta, m_{\mu})$$

(extrapolations from 1412.8484)

Gonzalez-Alonso & JMC, NA62 Phyics Handbook

Rare'N'Strange Workshop, 2017 https://indico.cern.ch/event/590880/contributions/2485320/

Semileptonic decays

Semileptonic Hyperon Decays (SHD)

Very interesting in view of LUV hints in semileptonic B decays

Many muonic modes have still very poor precision (20%, 100%)

- © High BR (10⁻⁴): Massive yields in LHCb acceptance
- 8 Challenging peaking backgrounds:

For each $B1 \rightarrow B2 \mu v$ there is always a $B1 \rightarrow B2\pi$ (inc. $\rightarrow B2\mu v$) (misid rate O(1%))

© Can be separated in search planes

M. Borsato et al., Phys. Rev. D 99, 055017 (2019) arXiv:1808.02006 [hep-ex]

Lepton Flavour Violation is forbidden in SM, but allowed in BSM

LHCb can do:

$$K_s \rightarrow e\mu$$

No limit exits so far

$$K_{_L} \rightarrow e \mu \le 4.7 x 10^{\text{-}12}$$
 BNL, PRL **81** (1998) 5734–5737

 $K_s \rightarrow e\mu$ is a LFV model discriminator

Lepton Flavour Violation

M. Borsato et al., Phys. Rev. D 99, 055017 (2019) arXiv:1808.02006 [hep-ex]

Lepton Flavour Violation is forbidden in SM, but allowed in BSM

LHCb can do:

$$K_S \rightarrow e\mu$$
 $K^+ \rightarrow \pi^+\mu^-e^+$
Maybe $K^+ \rightarrow \pi^+\mu^+e^-$

Competition w/ NA62

Others: Dark Baryons, dielectrons...

- B-mesogenesis: G. Alonso-Alvarez et al, arXiv:2101.02706
- LHCb potential using b-hadrons: V. Chobanova et al. arXiv:2106.12870
- Using hyperons (arXiV: 2201.07805):
 - $\Xi 0 \rightarrow \Pi\Pi X$
 - \sim few x 10⁻⁶, stat only (syst from bkg may be important)
 - Ξ-→ μμπ X : Narrow peak near threshold, very high trigger efficiency and low bkg bcs muons
 → ~few x 10⁻¹⁰ 10⁻¹¹ stat only, but bkg syst expected to be small (peaking bkgs from Σ→ρμμ, K→πμμ are far away in mass)
- $K_s \rightarrow \mu\mu ee$, $K_s \rightarrow eeee$, $K_s \rightarrow nnee$

Conclusions

- There is an LHCs community in the LHCb village
 - Trigger is constantly improving
 - From now on we expect to reach efficiencies s as high as for b's
- Available measurements for: $\Sigma \to p\mu\mu$, $BR(K_S \to \mu\mu)$, $BR(K_{S(L)} \to \mu\mu\mu\nu)$ • First LHCb result with K_L was presented at this conference
- Published prospects for $K_s \rightarrow \pi^0 \mu \mu$, $K_s \rightarrow \pi^+ \pi^- ee$
- Run-II (2016-2018) data analysis ongoing $\Sigma \rightarrow p\mu\mu$, $K_s \rightarrow (\gamma/\pi 0)\mu\mu$, $\Lambda \rightarrow p\mu\nu$...
- Some more channels in our TODO list

Backup

B and L violation

CLAS collaboration (Jefferson Lab): Limits on B and L violation

arXiv:1507.03859 [hep-ex]

We can easily do many of CLAS' decays

...as well as others:

- $\Sigma \rightarrow 3\mu$
- Λ→ π3μ

...and many other crazy (J conserving) combinations.

Currently very low priority, since we assume that BSM contributions can only be as much as BR ~10⁻⁵⁶

Strangeness decays

- So far a kaons showed great success on indirect searches: c, b, t, CKM ...
- High theoretical interest, most notably to test departures from MFV paradigm (eg, flavor generic)

- Useful to understand "Hints" for BSM in b sector
 - Eg: deviations in b \rightarrow sµµ: are they replicated in s \rightarrow dµµ?

• Potentially immense samples : high(est) ultimate experimental precision

Y **→** interesting

Efficiencies

* More details in: arXiv:1808.03477 [hep-ex]

			eff/eff(K _s)	Mass resolution	
Channel	$Xs/Xs(K_s)$	$eff/eff(K_s)$	w/ Downstream tracks	$\sigma_L({ m MeV}/c^2)$	$\sigma_D ({\rm MeV}/c^2)$
$K_s^0 \rightarrow \mu^+\mu^-$	1	1.0 (1.0)	1.8 (1.8)	~ 3.0	~ 8.0
$K_{\mathrm{s}}^{0} ightarrow \pi^{+}\pi^{-}$	1	1.1(0.30)	1.9(0.91)	~ 2.5	~ 7.0
$K_s^0 \rightarrow \pi^0 \mu^+ \mu^-$	1	0.93 (0.93)	1.5 (1.5)	~ 35	~ 45
$K_s^0 \rightarrow \gamma \mu^+ \mu^-$	1	0.85(0.85)	1.4 (1.4)	~ 60	~ 60
$K_s^0 \to \mu^+ \mu^- \mu^+ \mu^-$	1	0.37(0.37)	1.1 (1.1)	~ 1.0	~ 6.0
$K_{\rm L}^{0} \rightarrow \mu^{+}\mu^{-}$	~ 1	$2.7 (2.7) \times 10^{-3}$	0.014 (0.014)	~ 3.0	~ 7.0
$K^+ \rightarrow \pi^+\pi^+\pi^-$	~ 2	$9.0 (0.75) \times 10^{-3}$	$41 (8.6) \times 10^{-3}$	~ 1.0	~ 4.0
$K^+ \rightarrow \pi^+ \mu^+ \mu^-$	~ 2	$6.3 (2.3) \times 10^{-3}$	0.030 (0.014)	~ 1.5	~ 4.5
$\Sigma^+ \rightarrow p \mu^+ \mu^-$	~ 0.13	0.28 (0.28)	0.64(0.64)	~ 1.0	~ 3.0
$\Lambda o p \pi^-$	~ 0.45	0.41(0.075)	1.3(0.39)	~ 1.5	~ 5.0
$\Lambda \rightarrow p \mu^- \bar{\nu_{\mu}}$	~ 0.45	0.32(0.31)	0.88(0.86)	_	_
$\Xi^- \rightarrow \Lambda \mu^- \bar{\nu_{\mu}}$	~ 0.04	$39 (5.7) \times 10^{-3}$	0.27(0.09)	_	_
$\Xi^- \rightarrow \Sigma^0 \mu^- \bar{\nu_{\mu}}$	~ 0.03	$24 (4.9) \times 10^{-3}$	0.21(0.068)	_	_
$\Xi^- o p \pi^- \pi^-$	~ 0.03	0.41(0.05)	0.94(0.20)	~ 3.0	~ 9.0
$\Xi^0 ightarrow p \pi^-$	~ 0.03	1.0(0.48)	2.0 (1.3)	~ 5.0	~ 10
$\Omega^- o \Lambda \pi^-$	~ 0.001	95 (6.7) $\times 10^{-3}$	0.32(0.10)	~ 7.0	~ 20

Sensitivity of (semi)leptonic kaon decays in a nutshell

■ K_{ℓ3}

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{G_F^2 m_K^5}{192 \pi^3} |\tilde{V}_{us}^{\ell}|^2 f_+(0)^2 \underbrace{I_K^{\ell}(\lambda_{+,0}, \, \epsilon_S^{s\ell}, \, \epsilon_T^{s\ell})}^{\text{Phase-space Int.}} \underbrace{\left(1 + \delta^c + \delta_{\text{em}}^{c\ell}\right)^2}_{\text{Rad. and isosp. corr.}}$$

• Ke2

$$\Gamma_{K_{\ell 2}(\gamma)} = \frac{G_F^2 m_K \, m_\ell^2}{8\pi} (1 - \frac{m_\ell^2}{m_P^2})^2 \, |\tilde{V}_{us}^\ell|^2 f_{K^\pm}^2 (1 - 4\epsilon_R^s - \underbrace{\frac{2B_0}{m_\ell} \epsilon_P^{s\mu}}_{\chi \, \text{enh.}})$$

- $ightharpoonup |\tilde{V}_{us}^{\ell}|$ only accessible through CKM unitarity and LUV tests
- $lackbox{\epsilon}_{R}^{s}$ cannot be completely disentangled from $\epsilon_{P}^{s\ell}$
- $lackbox{}{\epsilon}_{S,T}^{s\ell}$ accessible through the spectra/angular distribution

Kaon decays alone cannot disentangle all NP possibilities

$K_S \rightarrow \pi^+\pi^-ee$ sensitivity study

Based on simulation:

Expected a signal yield of

$$=120^{+280}_{-100}$$

For the full Run-I dataset

Expected background yield is not well known yet

K0 tagging?

$$pp \to K^0K^-X$$
, $pp \to K^{*+}X \to K^0\pi^+X$ and $pp \to K^0\Lambda^0X$.

Toy MC for $50 \mathrm{fb}^{-1}$

Lifetime acceptance and $K_1 \rightarrow \mu\mu$ background

 K_{L} and K_{S} are distinguishable only by the decaytime...

... and that is in theory. In practice, LHCb decaytime acceptance is not great for kaons

() - With
$$\beta$$
 5x Γ s (>> Γ _L).

This makes the two lifetime distributions to look similar

But the overall efficiency ratio is of course different

$$\frac{\epsilon_{K_{\rm L}^0}}{\epsilon_{K_{\rm S}^0}} = \frac{\Gamma_L \int_{0.1\tau_S}^{1.45\tau_S} e^{-t(\Gamma_S+\beta)} dt}{\Gamma_S \int_{0.1\tau_S}^{1.45\tau_S} e^{-t(\Gamma_L+\beta)} dt} \approx 2.2 \times 10^{-3} \begin{array}{l} \text{negligible background for the current level of precision} \\ \text{But can be relevant when we approach the } 10^{-11} \, \text{level} \end{array}$$

And makes $K_{\perp} \rightarrow \mu\mu$ to become a

$$\beta \sim 86\,\mathrm{ns}^{-1}$$

Normalization of event yield

Converting a signal yield into a branching ratio

production crossection

$$N$$
 $\begin{pmatrix} & 0 \\ & & \rightarrow \end{pmatrix}$

How? (normalization of event yield)

Converting a signal yield into a branching ratio

production crossection

$$N$$
 $\begin{pmatrix} & 0 \\ & & \rightarrow \end{pmatrix}$

$$=\begin{pmatrix} \bullet & 0 \\ \bullet & 0 \end{pmatrix} \mathbf{B}$$

Absolute efficiency
$$\begin{pmatrix} 0 \\ \rightarrow \end{pmatrix}$$
Integrated luminosity

$$\frac{N\begin{pmatrix} 0 & \rightarrow & \\ N\begin{pmatrix} 0 & \rightarrow & \\ \end{pmatrix}}{N\begin{pmatrix} 0 & \rightarrow & \\ \end{pmatrix}} = \frac{\begin{pmatrix} 0 & B & \begin{pmatrix} 0 & \rightarrow & \\ \end{pmatrix}}{\begin{pmatrix} 0 & B & \begin{pmatrix} 0 & \rightarrow & \\ \end{pmatrix}}$$

$$\frac{Very \text{ well }}{Very \text{ well }}$$

Introduce in the ntuples a decays counter

Very well known (69.20±0.05)%

Dilepton mass distribution

Take formulae from hep-ph/9808289

$$\frac{d\Gamma}{dz} = \frac{\alpha^2 M_K}{12\pi (4\pi)^4} \lambda^{3/2} (1, z, r_\pi^2) \sqrt{1 - 4\frac{r_\ell^2}{z}} \left(1 + 2\frac{r_\ell^2}{z} \right) |W(z)|^2, \tag{3}$$

 $z= m^2 \rightarrow d\Gamma/dm = 2m d\Gamma/dz$

$$W_i(z) = G_F M_K^2(a_i + b_i z) + W_i^{\pi\pi}(z) , \qquad (11)$$

$$W_i^{\pi\pi}(z) = \frac{1}{r_\pi^2} \left[\alpha_i + \beta_i \frac{z - z_0}{r_\pi^2} \right] F(z) \chi(z) ,$$

Remind of Bmm sensitivity

B mesons

We check that we get right the expected increase of B meson yields (i.e, a factor ~2)

D mesons

For D mesons the increase is slightly smaller (~1.6-1.7)

Strange particles

Increase for most of them is ~40%

A bit less for baryons (note: baryons, not antibaryons)

However, the momentum is also different w.r.t 7 TeV.

In particular, for the K0s decaying in the VELO the increase is "only" \sim 30% \rightarrow This is the number we really care for Ks \rightarrow $\mu\mu$ studies

Leptons

Increase in tau yiled consistent with ~ 2, expected by the fact that most of them come from b's and c's

Check with more stats if the asymmetry +/- is still there

→ the long-distance (LD) contributions:

→ the short-distance (SD) contributions:

$K_S \rightarrow \pi^0 \mu \mu$ sensitivity study

The background discrimination

BDT response FULL

BDT response **PARTIAL**

- As usual: BDT trained against combinatorial background
- Specific backgrounds: $K_S \rightarrow \Pi\Pi$, $K_L \rightarrow \Pi\Pi\Pi$, $K_{S/L} \rightarrow \mu\mu\gamma\gamma$ (negligible)

 Don't affect the sensitivity estimate

$K_S \rightarrow \pi^0$ μμ sensitivity study

Fit, FULL

V. Chobanova et al, CERN-LHCb-PUB-2016-017

$K_S \rightarrow \pi^0$ μμ sensitivity study

Fit, PARTIAL

V. Chobanova et al, CERN-LHCb-PUB-2016-017

Strangeness production/detection at LHCb

- The pp collisions @ LHC produce a 'kaon flux' of 10¹³ K_s per fb⁻¹ of luminosity in the LHCb acceptance
- Charged decay products can be reconstructed using Long Tracks or Downstream Tracks
- We use Long Tracks for RnS
- Downstream will be investigated (extra yield, but worse reconstruction quality)

Ongoing stuff

K⁺ studies

Large samples of charged kaon decays are available

K⁺ mass is not very well known

K⁺→πμμ?

$K_S \rightarrow X^0 \mu \mu$

- The $K_s \to \pi^0 \mu \mu$ PARTIAL analysis can be recasted for general/inclusive $K_s \to X^0 \mu \mu$. With X being whatever neutral system:
 - $K_s \rightarrow \gamma \mu \mu$. Can also be completed with photon reconstruction
 - $K_s \rightarrow (l+l-)\mu\mu$. Some of them are also being searched for explicitly
 - Some exotic, eg, 17 MeV neutral boson of Phys. Rev. Lett. 116, 042501 (2016)

Limits can be provided as a function of X⁰ mass

$K_S \rightarrow \mu\mu$ full Run-I analysis

arXiv:1706.00758 [hep-ex]

- Analysed full Run-I (2011-2012) data
- Events classified using a BDT trained against combinatorial background
- Dedicated muon identification algorithm trained against $K_s \rightarrow \Pi\Pi$
- Mass resolution 4 MeV

Background

 $K_L \rightarrow \mu\mu$ negligible: (down to 10^{-11} precision)

K→пµv : negligible

 $\Lambda \rightarrow$ p Π removed by a cut in the Armenteros-Podolanski plot.

- Combinatorial background
- $K_s \rightarrow \pi\pi$ double misid

$K_S \rightarrow \pi^+\pi^-ee$ sensitivity study

Based on simulation:

Expected a signal yield of

$$=120^{+280}_{-100}$$

For the full Run-I dataset

Expected background yield is not well known yet

Why? ($K_s \rightarrow \pi^0 \mu \mu$ and SM errors on $K_L \rightarrow \pi^0 \mu \mu$)

$$\mathcal{B}(K_L \to \pi^0 \mu^+ \mu^-)_{SM} = \{1.4 \pm 0.3, 0.9 \pm 0.2\} \cdot 10^{-11}$$

$$\mathcal{B}(K_L \to \pi^0 l^+ l^-) = \left(C_{\text{dir}}^l \pm C_{\text{int}}^l |a_S| + C_{\text{mix}}^l |a_S|^2 + C_{\gamma\gamma}^l + C_S^l \right) \cdot 10^{-12}$$

$$|a_S| = 1.20 \pm 0.20$$

$$C_{\text{dir}}^e = (4.62 \pm 0.24) \left[(\text{Im} Y_A)^2 + (\text{Im} Y_V)^2 \right],$$

$$C_{\rm int}^e = (11.3 \pm 0.3) \,\mathrm{Im} \, Y_V \,,$$

$$C_{\rm mix}^e = 14.5 \pm 0.5$$
,

$$C_{\gamma\gamma}^e \approx C_S^e \approx 0$$
,

$$C_{\text{dir}}^{\mu} = (1.09 \pm 0.05) \left[2.32 \left(\text{Im} Y_A \right)^2 + \left(\text{Im} Y_V \right)^2 \right] \frac{\text{meas}}{K_S^0 \to \pi^0 \mu^+ \mu^-}$$

$$C_{\text{int}}^{\mu} = (2.63 \pm 0.06) \,\text{Im} \, Y_V \,,$$

$$C_{\rm mix}^{\mu} = 3.36 \pm 0.20$$
,

$$C^{\mu}_{\gamma\gamma} = 5.2 \pm 1.6$$
,

$$C_S^{\mu} = (0.04 \pm 0.01) \operatorname{Re} Y_S + 0.0041 (\operatorname{Re} Y_S)^2$$
.

 $|a_S| = 1.20 \pm 0.20$ Dominant uncertainty, that makes difficult potential BSM interpretation of $K_{\mathbf{I}} \rightarrow \pi^0 \mu \mu$

> It comes from the **experimental uncertainty** on BR($K_s \rightarrow \pi^0 \mu \mu$) measured by NA48

$$K_S^0
ightarrow \pi^0 \mu^+ \mu^-$$

NA48

$$(2.9 \ ^{+1.5}_{-1.2}) imes 10^{-9}$$

~50% relative error

Improved measurements of BR($K_s \rightarrow \pi^0 \mu \mu$) will translate into improved BSM 54 constraints from $K_L \rightarrow \pi^0 \mu \mu$

Charged kaons

• K^+ mass in $K \rightarrow 3\pi$

- Under study sensitivity to $K^+ \rightarrow \pi^+ \mu \mu$ vs NA62
 - Benefits from the new dimuon triggers (the same way as $K_s \rightarrow \mu\mu$)

